Direkt zum Inhalt

Skew-Risiko

GEPRÜFTES WISSEN
Über 100 Experten aus Wissenschaft und Praxis.
Mehr als 8.000 Stichwörter kostenlos Online.
Das Original: Gabler Banklexikon

zuletzt besuchte Definitionen...

    Ausführliche Definition

    1. Skew-Risiko i.w.S.: Während das sog. Volatilitätsrisiko das Risiko potentieller Verluste durch Veränderungen des Niveaus der impliziten Volatilität(en) bezeichnet, wird mit dem Begriff des Skew-Risiko das Risiko der Bewegung einzelner impliziter Volatilitäten – unterschieden je nach Optionsserie – in unterschiedliche Richtungen, also das Risiko potentieller Verluste durch Veränderungen der (vertikalen) Struktur der impliziten Volatilitäten, kurz der Smile-Struktur, umschrieben. Die Bedeutung des Skew-Risikos (und dessen Managements) mag man daran ersehen, dass hinsichtlich des analogen Marktrisikofaktors "Zins" die Unterscheidung (u.a.) in ein Outright-Risiko als "Zinsniveaurisiko" und ein Zinsstrukturkurvenrisiko seit jeher selbstverständlich ist. In beiden Fällen handelt es sich um ein sog. Spread-Risiko.

    2. Skew-Risiko i.e.S. und Kurtosis-Risiko: Das Skew-Risiko i.w.S. lässt sich in zwei Bestandteile ausdifferenzieren: das Skew-Risiko i.e.S. als Risiko der Begradigung oder (weiteren) Beugung der Volatilitätsstruktur und das Kurtosis-Risiko als Risiko der Dehnung oder (weiteren) Stauchung der Volatilitätsstruktur, letzteres in Bezug auf den leptokurtischen "Normalfall", die bekannten "fat tails", (gemessen an der Normalverteilung) überdurchschnittlich vieler "Renditeausreißer" nach oben und unten (Portfolio-Theorie, Modellbeurteilung).

    Der ökonomische Hintergrund der beiden Risiken lässt sich an Hand der Auswirkungen eines Volatilitätsanstiegs auf den Wert von Farer-out-of-the-Money-Optionen veranschaulichen: Steigt die (tatsächliche oder implizite) Volatilität oder sogar deren Volatilität (Konvexität der Volatilität selbst), steigt die Chance, dass diese Optionen in Bereiche der Moneyness, nämlich nearer oder sogar at the Money, gelangen, in denen sich sowohl die "darauffolgende" tatsächliche als auch implizite Volatilität positiver auswirken als zuvor, wie an den gestiegenen Gamma- und Vega-Faktoren abgelesen werden kann; die Gefahr, noch weiter aus dem Geld zu geraten, fällt relativ weniger ins Gewicht. Für Near- und At-the-Money-Optionen gilt genau das Gegenteil: Sie befinden sich dort auf höchstmöglichem Gamma- und Vega-Niveau und leiden demnach an jeder Volatilitätsveränderung; dies ist auch am Zomma- und Ultima-Faktor abzulesen, die die Veränderung vom Gamma bzw Vega in Abhängigkeit von der (impliziten) Volatilität beschreiben. Die oft vergessene Kehrseite der "fat tails", die sog. "peakedness around the mean" (vgl. historische Volatilität, Ziff. 3) kann dies wegen der beiden involvierten Konvexitäten vom Chance-Risiko-Profil her nicht wettmachen. Wichtiger sind hier die Chancen und Risiken daraus, dass der Volatilitätsanstieg mit einem Kursrückgang einher gehen kann, der einen neuerlichen Volatilitätsanstieg bewirkt (sich selbst verstärkende Interdependenz mit "Crash-Potential"), während ein Volatilitätsabfall mit einem Kursaufschwung in Verbindung stehen kann, dessen Dynamik nun allerdings durch einen neuerlichen Volatilitätsschwund "ausgebremst" wird (sog. "absorbing state", slightly in the Money). Die sich jeweils einstellenden Gewinne und Verluste sind für Long- und Short-Positionen in Puts und Calls jeweils unterschiedlich hoch (vgl. genauer Volatility Smile a.E.).

    3. Das Skew-Risiko innerhalb des Vega-Hedging: Speziell bei der mit dem Vega-Hedging beabsichtigten Immunisierung einer Optionsposition gegen Veränderungen der impliziten Volatilität ist auch die Veränderlichkeit des Vega in Abhängigkeit vom Kurs des Underlying, gemessen am sog. Vanna, und von der impliziten Volatilität selbst, gemessen am sog. Volga (oder Vomma) beachtlich; so stellen sich das Skew-Risiko i.e.S. als Vanna-Risiko und das Kurtosis-Risiko als Volga-Risiko dar. Im sog. "Vanna-Volga Pricing" wird nun die unter Ziff. 1 und 2 skizzierte Risikolandschaft durch expliziten Rückgriff auf die Optionsbewertung im Geiste von Black/Scholes formalisiert und integriert, indem die Kosten für das Hedging einer Optionsposition gegenüber Vega-, Vanna- und Volga-Risiko simultan ermittelt werden. Im Ergebnis werden so die Optionswerte im Geist von Black/Scholes in Abhängigkeit von der konkreten (vertikalen) Smile-Struktur korrigiert. Die Vanna-Volga-Methode ist als fortgeschrittenes Analyse-, Pricing- und Hedging-Tool im professionellen Handel bereits weit verbreitet und hat verschiedene Verfeinerungen erfahren.

    4. Einordnung des Vanna-Volga Pricing: Dass das Hedging konkret auf der Grundlage von Straddles, Risk Reversals und Butterfly Spreads erfolgt bzw. simuliert wird, zeigt seine Herkunft aus dem OTC-Devisenhandel an; vgl. dazu die Ausführungen zum Risk Reversal als Marktpreis. Dort zunächst zu Zwecken der Bewertung exotischer Optionen entwickelt, leistet es aber auch auf anderen Märkten gute Dienste. Charakteristischer Unterschied zum Konzept der Volatility Surface ist jedenfalls die sehr enge Bindung an das Black-Scholes- bzw. Garman-Kohlhagen-Modell (was im Sinne eines Fehlerausgleichs bei Parameterschätzung plus Optionsbewertung kein Nachteil sein muss; vgl. implizite Volatilität, Ziff. 3). Indem inhaltlich das Vanna-Risiko auf der Korrelation von Volatilität und Kurs des Underlying und das Volga-Risiko auf der Volatilität der Volatilität ("Vola-Vola") beruhen, zeigt auch eine Verwandtschaft mit fortgeschrittenen Modellen stochastischer Volatilität an, in denen diese beiden Risikotypen ebenfalls integriert behandelt werden. Der entscheidende Unterschied liegt darin, dass dort auf die tatsächliche, hier auf die implizite Volatilität abgestellt wird.

    Vgl. zu den einschlägigen (basispreisbezogenen) Volatilitätsstrukturen Volatility Smile, Volatility Skew.  

    zuletzt besuchte Definitionen...

      Mindmap Skew-Risiko Quelle: https://www.gabler-banklexikon.de/definition/skew-risiko-99515 node99515 Skew-Risiko node62378 Volatilitätsrisiken node99515->node62378 node60569 Portfolio-Theorie Modellbeurteilung node99515->node60569 node99513 Volatility Skew node99515->node99513 node58773 implizite Volatilität node99515->node58773 node71038 Volatility Smile node99515->node71038 node99520 Risk Reversal node99520->node60569 node99520->node58773 node81602 Marktrisiko node62378->node81602 node62378->node58773 node56958 Derivate node62378->node56958 node57299 Effizienzkurve node56573 Capital Asset Pricing ... node60569->node57299 node60569->node56573 node58703 historische Volatilität node60569->node58703 node99541 Moneyness node58773->node58703 node99531 Volatility Surface node58773->node99531 node62379 Volatilitätsstrategien node71038->node99541 node71038->node58773 node71038->node62379 node99542 Volatility Smirk node99542->node99513 node99516 Skew-Trading node99516->node99513 node99531->node99513 node99531->node71038
      Mindmap Skew-Risiko Quelle: https://www.gabler-banklexikon.de/definition/skew-risiko-99515 node99515 Skew-Risiko node99513 Volatility Skew node99515->node99513 node71038 Volatility Smile node99515->node71038 node58773 implizite Volatilität node99515->node58773 node60569 Portfolio-Theorie Modellbeurteilung node99515->node60569 node62378 Volatilitätsrisiken node99515->node62378

      News SpringerProfessional.de

      Autoren der Definition und Ihre Literaturhinweise/ Weblinks

      Literaturhinweise SpringerProfessional.de

      Bücher auf springer.com

      Sachgebiete